Women who transmitted HIV-1 to their infants had a significantly higher geometric mean concentration of V3 loop specific IgG1 antibody than non-transmitters. Concentrations of V3 loop-specific IgA antibody, which does not cross the placenta, were not different between transmitting and non-transmitting mothers. The higher concentrations of IgG1 in transmitters could be a direct correlate of transmission or it could simply be a marker for other maternal factors that enhance maternal-infant transmission, such as longer duration of infection or increased viral load. However, in the limited subsets of our subjects for whom data were available, there was no correlation between p24 antigen concentration (a correlate of viral load) or CD4 T-cell numbers (a correlate of disease stage) and envelope-specific IgG1 concentrations. These results are consistent with another report showing that antibody concentration to a specific HIV antigen, p24, declines as disease progresses.9 The possibility that maternal antibody to the primary neutralising domain of the HIV envelope is positively associated with maternal-infant transmission may have important implications for efforts to interrupt the transmission process.

Figure: Concentrations of HIV-1 V3 loop specific IgG1 and IgA antibody in mothers who transmitted HIV-1 to their child and those who did not

Note different scales for y-axes.

References

4 Devash Y, Calvelli TA, Wood DQ, et al. Vertical transmission of human immunodeficiency virus is correlated with the absence of high affinity/avidity maternal antibodies to the gp 120 principal neutralizing domain. Proc Natl Acad Sci USA 1990; 87: 3445–49.

New arenavirus isolated in Brazil

Terezinha Lisieux M Coimbra, Elza S Nassar, Marcelo N Burattini, Luiza Terezinha Madia de Souza, Ivani B Ferreira, Iray M Rocco, Amelia P A Travassos da Rosa, Pedro F C Vasconcelos, Francisco P Pinheiro, James W LeDuc, Rebeca Rico-Hesse, Jean-Paul Gonzalez, Peter B Jahrling, Robert B Tesh

A new arenavirus, called Sábia, was isolated in Brazil from a fatal case of haemorrhagic fever initially thought to be yellow fever. Antigenic and molecular characterisation indicated that Sábia virus is a new member of the Tacaribe complex. A laboratory technician working with the agent was also infected and developed a prolonged, non-fatal influenza-like illness. Sábia virus is yet another arenavirus causing human disease in South America.

Lancet 1994; 343: 391–92

Support by grants AI32468 and P30 AI28748 from the National Institutes of Health and P01 121-10-PEG from the American Foundation for AIDS Research. We thank Dr Joseph B Margolick, Ms Julie A Grim, and Mr Scott Summers for statistical analysis and preparation of graphics for this manuscript; Dr Chin-Yi Ou and Dr Marcia Kalish, Centers for Disease Control and Prevention, Atlanta, for amplifying viral sequences; and Mr Denise McNairn for technical assistance.

Departments of Immunology and Infectious Diseases (R B Markham MD, J Gomez es), International Health (Prof N A Halsey MD, J Coberly MD, A J Ruff MD, E Holt MD), Epidemiology (D Hoover PhD), and Medicine (Prof T C Quinn MD), Johns Hopkins University School of Hygiene and Public Health, 615 N Wolfe Street, Baltimore, MD 21205, USA; and Centers for Development and Health, Port-au-Prince, Haiti (J Desormeaux MD, R Boulos MD)

Correspondence to: Dr Richard B Markham

Vol 343 • February 12, 1994

391
Table: Laboratory findings

<table>
<thead>
<tr>
<th></th>
<th>Admission</th>
<th>Day 3</th>
<th>Day 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haemoglobin (g/dL)</td>
<td>12.4</td>
<td>11.0</td>
<td>8.3-4.9</td>
</tr>
<tr>
<td>Total leucocytes (< x 10^9/L)</td>
<td>3.7</td>
<td>5.9</td>
<td>7.7</td>
</tr>
<tr>
<td>Neutrophils (%)</td>
<td>66</td>
<td>78</td>
<td>54</td>
</tr>
<tr>
<td>Lymphocytes (%)</td>
<td>13</td>
<td>19</td>
<td>38</td>
</tr>
<tr>
<td>Platelets (< x 10^9/L)</td>
<td>> 150</td>
<td>90</td>
<td>36</td>
</tr>
<tr>
<td>Prothrombin time (s)</td>
<td></td>
<td>14.7</td>
<td>17</td>
</tr>
<tr>
<td>Fibrinogen (mg/dL)</td>
<td></td>
<td>185</td>
<td>115</td>
</tr>
<tr>
<td>Creatinine (mg/dL)</td>
<td>0.9</td>
<td>2.2</td>
<td>3.1</td>
</tr>
<tr>
<td>Aspartate aminotransferease (U/L)</td>
<td>96</td>
<td>3230</td>
<td>3180</td>
</tr>
<tr>
<td>Alanine aminotransferase (U/L)</td>
<td>35</td>
<td>770</td>
<td>820</td>
</tr>
<tr>
<td>Alkaline phosphatase (U/L)</td>
<td></td>
<td></td>
<td>491</td>
</tr>
<tr>
<td>Total bilirubin (mg/dL)</td>
<td>0.7</td>
<td>4.1</td>
<td>2.0</td>
</tr>
<tr>
<td>Direct bilirubin (mg/dL)</td>
<td>0.3</td>
<td>3.8</td>
<td>1.4</td>
</tr>
</tbody>
</table>

fever, headache, myalgia, nausea, vomiting, and weakness. The patient’s history was unremarkable. She worked mainly in an office. She had not travelled out of São Paulo State for 2 months before her illness. The 10 days preceding onset were spent in two different cities with family and friends, all of whom were well.

Examination revealed an acutely ill, somnolent, and mildly dehydrated woman with a very red oropharynx. Laboratory studies (table) indicated leucopenia and slightly elevated aspartate aminotransferase. The differential diagnoses included sepsis, leptospirosis, malaria, hepatitis, and yellow fever. Treatment included intravenous fluids, electrolytes, and cefoxitin (1 g every 6 h) and amikacin (500 mg every 12 h). Over the next 3 days, the patient worsened with haematemesis, vaginal bleeding, and conjunctival petechiae. She developed increasing somnolence, tremors, difficulty in walking, and generalised tonic-clonic convulsions. On the third day, the patient went into coma and unresponsive shock; laboratory tests were abnormal (table). Death occurred on the fourth day.

Principal necropsy findings were: diffuse pulmonary oedema and congestion with intraparenchymal haemorrhages; hepatic congestion with focal haemorrhage and necrosis; renal oedema and acute tubular necrosis; splenic enlargement and congestion; and massive gastrointestinal haemorrhage.

A blood sample taken shortly before death was submitted to the Adolfo Lutz Institute, where it was inoculated intracerebrally into newborn mice. A filterable agent was isolated from brains of the sick and dying mice. Because this agent did not react with immune sera prepared to human pathogenic viruses commonly encountered in Brazil (including yellow fever), it was forwarded to the Evandro Chagas Institute and then to the Yale Arbovirus Research Unit and the US Army Medical Research Institute of Infectious Diseases for further study. Results of complement-fixation, immunofluorescence, and neutralisation indicated that the agent, called Sabia virus after the name of the community where the patient was staying when she became ill, is a new member of the Tacaribe complex of the genus Arenavirus. 4 250 nucleotides from the 3’ end of the S segment of Sabia virus RNA were compared with those of five other Tacaribe complex viruses (Junin, Machupo, Guanarito, Tacaribe, and Pichinde) by limited sequence analysis. 5,6 Sabia virus was 56% divergent from Junin, Machupo, and Guanarito viruses. The source of infection in the index case is unknown, but it seems likely that Sabia virus exists in a rodent reservoir.

During characterisation of the virus in Belem, a 39-year-old laboratory technician was infected, probably by aerosol. 7 He had a severe illness (temperature 38–40°C, chills, malaise, headache, generalised myalgia, sore throat, conjunctivitis, nausea, vomiting, diarrhoea, epigastric pain, and bleeding gums) for 15 days. Besides leucopenia (2.5 x 10^9/L), laboratory values remained normal. Admission and intravenous fluids were required and the patient recovered. Seroconversion to Sabia virus was demonstrated in paired acute and convalescent sera.

The signs and symptoms in our two patients were similar to those of the other arenaviruses haemorrhagic fevers.1,2,8 Liver damage is often observed in patients dying of such fevers.9 The histopathological appearance of the liver at necropsy is indistinguishable from that of yellow fever.

Our two cases illustrate the difficulty in diagnosing arenavirus infections. These illnesses are insidious and initially indistinguishable from various other common non-specific viral infections.1,8 If they become haemorrhagic, they can be misdiagnosed as yellow fever or dengue haemorrhagic fever.1,2,8 Virological confirmation is essential to establish a correct diagnosis.

This work was supported in part by grants AI-10984, AI-33983, and AI-01124 from the National Institutes of Health. J-P G was supported by the Institut Francais de Recherche Scientifique Pour Le Developpement en Cooperation (ORSTOM).

References
9 Walker DH, Murphy FA. Pathology and pathogenesis of arenaviral infections. Curro Topics MicrobaIm Immunol 1987; 139: 89–113.