xmlui.ArtifactBrowser.ItemViewer.show_simple

dc.contributor.authorChaves, Lana Bitencourt-
dc.contributor.authorPerce-da-Silva, Daiana de Souza-
dc.contributor.authorRodrigues-da-Silva, Rodrigo Nunes-
dc.contributor.authorSilva, João Hermínio Martins da-
dc.contributor.authorCassiano, Gustavo Capatti-
dc.contributor.authorMachado, Ricardo Luiz Dantas-
dc.contributor.authorPratt-Riccio, Lilian Rose-
dc.contributor.authorBanic, Dalma Maria-
dc.contributor.authorLima Junior, Josué da Costa-
dc.date.accessioned2017-11-09T18:13:37Z-
dc.date.available2017-11-09T18:13:37Z-
dc.date.issued2017-
dc.identifier.citationCHAVES, Lana Bitencourt et al. Plasmodium vivax cell traversal protein for Ookinetes and Sporozoites (PvCelTOS) gene sequence and potential epitopes are highly conserved among isolates from different regions of Brazilian Amazon. PLoS Neglected Tropical Diseases, v. 11, n. 2, p 1-19, Feb. 2017.pt_BR
dc.identifier.issn1935-2735-
dc.identifier.urihttp://patua.iec.gov.br//handle/iec/2837-
dc.description.abstractThe Plasmodium vivax Cell-traversal protein for ookinetes and sporozoites (PvCelTOS) plays an important role in the traversal of host cells. Although essential to PvCelTOS progress as a vaccine candidate, its genetic diversity remains uncharted. Therefore, we investigated the PvCelTOS genetic polymorphism in 119 field isolates from five different regions of Brazilian Amazon (Manaus, Novo Repartimento, Porto Velho, Plácido de Castro and Oiapoque). Moreover, we also evaluated the potential impact of non-synonymous mutations found in the predicted structure and epitopes of PvCelTOS. The field isolates showed high similarity (99.3% of bp) with the reference Sal-1 strain, presenting only four Single-Nucleotide Polymorphisms (SNP) at positions 24A, 28A, 109A and 352C. The frequency of synonymous C109A (82%) was higher than all others (p<0.0001). However, the non-synonymous G28A and G352C were observed in 9.2% and 11.7% isolates. The great majority of the isolates (79.8%) revealed complete amino acid sequence homology with Sal-1, 10.9% presented complete homology with Brazil I and two undescribed PvCelTOS sequences were observed in 9.2% field isolates. Concerning the prediction analysis, the N-terminal substitution (Gly10Ser) was predicted to be within a B-cell epitope (PvCelTOS Accession Nos. AB194053.1) and exposed at the protein surface, while the Val118Leu substitution was not a predicted epitope. Therefore, our data suggest that although G28A SNP might interfere in potential B-cell epitopes at PvCelTOS N-terminal region the gene sequence is highly conserved among the isolates from different geographic regions, which is an important feature to be taken into account when evaluating its potential as a vaccine candidate.pt_BR
dc.description.sponsorshipThis work was supported by Brazilian National Research Council–CNPq/PAPES, (Conselho Nacional de Desenvolvimento Científico e Tecnológico/Programa de Apoio e Pesquisa Estratégica em Saúde) Fiocruz. JdCLJ is recipient of a FAPERJ APQ1 (E-26/210.653/2015), Jovem Cientista do Nosso Estado (E26/203.255/2016).pt_BR
dc.language.isoengpt_BR
dc.publisherPublic Library of Sciencept_BR
dc.rightsAcesso Abertopt_BR
dc.titlePlasmodium vivax cell traversal protein for Ookinetes and Sporozoites (PvCelTOS) gene sequence and potential epitopes are highly conserved among isolates from different regions of Brazilian Amazonpt_BR
dc.typeArtigopt_BR
dc.subject.decsPrimaryEpitopos / genéticapt_BR
dc.subject.decsPrimaryEpitopos / imunologiapt_BR
dc.subject.decsPrimaryPlasmodium vivax / genéticapt_BR
dc.subject.decsPrimaryPlasmodium vivax / imunologiapt_BR
dc.subject.decsPrimaryProteínas de Protozoários / genéticapt_BR
dc.subject.decsPrimaryAnálise de Sequência de DNApt_BR
dc.subject.decsPrimaryPolimorfismo de Nucleotídeo Únicopt_BR
dc.subject.decsPrimarySequência Conservadapt_BR
dc.subject.decsPrimaryVariação Genéticapt_BR
dc.subject.decsPrimaryMutaçãopt_BR
dc.subject.decsPrimaryEcossistema Amazônicopt_BR
dc.subject.decsPrimaryBrasil (BR)pt_BR
dc.creator.affilliationFundação Oswaldo Cruz. Oswaldo Cruz Institute. Laboratory of Immunoparasitology. Rio de Janeiro, RJ, Brazil.pt_BR
dc.creator.affilliationFundação Oswaldo Cruz. Oswaldo Cruz Institute. Laboratory of Clinical Immunology. Rio de Janeiro, RJ, Brazil.pt_BR
dc.creator.affilliationFundação Oswaldo Cruz. Oswaldo Cruz Institute. Laboratory of Immunoparasitology. Rio de Janeiro, RJ, Brazil.pt_BR
dc.creator.affilliationFundação Oswaldo Cruz. Computational Modeling Group. Fortaleza, CE, Brazil.pt_BR
dc.creator.affilliationUniversity of Campinas. Department of Genetics, Evolution and Bioagents. Laboratory of Tropical Diseases - Prof. Luiz Jacintho da Silva. Campinas, SP, Brazilpt_BR
dc.creator.affilliationMinistério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Laboratório de Imunogenética da Malária. Ananindeua, PA, Brasil.pt_BR
dc.creator.affilliationFundação Oswaldo Cruz. Oswaldo Cruz Institute. Laboratory of Malaria Research. Rio de Janeiro, RJ, Brazil.pt_BR
dc.creator.affilliationFundação Oswaldo Cruz. Oswaldo Cruz Institute. Laboratory of Clinical Immunology. Rio de Janeiro, RJ, Brazil.pt_BR
dc.creator.affilliationFundação Oswaldo Cruz. Oswaldo Cruz Institute. Laboratory of Immunoparasitology. Rio de Janeiro, RJ, Brazil.pt_BR
dc.identifier.doi10.1371/journal.pntd.0005344-


xmlui.dri2xhtml.METS-1.0.item-files-head

Thumbnail

xmlui.ArtifactBrowser.ItemViewer.head_parent_collections

xmlui.ArtifactBrowser.ItemViewer.show_simple