• Portal do Governo Brasileiro
  • Atualize sua Barra de Governo
Logo
    • English
    • español
    • português (Brasil)
    • English
    • español
    • português (Brasil)
  • Entrar
Ver item 
  •   Página inicial
  • SEÇÃO DE MEIO AMBIENTE
  • SAMAM - Artigos Científicos
  • Ver item
  •   Página inicial
  • SEÇÃO DE MEIO AMBIENTE
  • SAMAM - Artigos Científicos
  • Ver item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Streamflow forecasts due precipitation water in a tropical large watershed at Brazil for flood early warning, based on SWAT model

Thumbnail
Data
2018
Visualizar/Abrir
Streamflow forecasts due precipitation water in a tropical large watershed at Brazil for flood early warning, based on SWAT model.pdf (1.018Mb)
Metadados
Mostrar registro completo
URI
http://patua.iec.gov.br//handle/iec/3497
Autor
Deus, Simonny C. S
Neves, Ramiro J. J
Jauche, Eduardo
Almeida, Carina
Faial, Kleber Raimundo Freitas
Medeiro, Adaelson Campelo
Mendes, Rosivaldo A
Faial, Kelson do Carmo Freitas
Leite, Jandecy Cabral
Deus, Ricardo J. A
Resumo
The Tocantins-Araguaia Watershed, which is distributed equivalent to 11% of Brazilian territory, conveys waters to the northern portion of Brazil with average discharge of 11000 m3 s -1 , with contribution from the Tocantins River (40%), the Araguaia River (45%), and the Itacaiúnas River (5%), making possible an intangible flood in the Marabá city and Tucuruí Hydroelectric Plant (Downstream) during periods of high rainfall within the tropical watershed without provide timely warnings. For flash flood forecasting in a tropical large watershed, streamflow forecasts due precipitation water is required for flood early warning and in this sense, numerical prediction models are fundamental to extend streamflow forecast of a watershed due to precipitation. The paper focuses on the use Soil and Water Assessment Tool (SWAT), January 2007 to December 2010 period, to comparison of streamflows obtained from the post-processed precipitation forecasts, in providing skilful flood forecasts. In this sense, the basin was divided into 109 sub-basins and 1969 HRUs, and the model was calibrated and validated based on flow rate data in three monitoring points located next of Marabá city and Tucuruí hydroelectric. Posteriorly, simulated discharges scenario due to climatic variability extreme were generated under three strategies: 10%, 50% and 100% increase in ambient temperature (24℃) due natural and/or anthropogenic events within the watershed. The model results show that stream flows obtained adds value to the flood early warning system when compared to precipitation forecasts. Considering that climate is a direct function of temperature it is obvious that all relevant phenomena undergo changes. The scenarios results show that 50% increase in ambient temperature this leads to greater and faster evaporation. Thus, the gradual increase of precipitation in tropical watershed large alters flow rates over time and increase flood potentials in areas downstream of the basins. However, the need for more detailed evaluation of the model results in the study area is highlighted, due adequately represent the convective precipitation within the large tropical watershed.
Referência
DEUS, Simonny C. S. et al. Streamflow forecasts due precipitation water in a tropical large watershed at Brazil for flood early warning, based on SWAT model. Journal of Engineering and Technology for Industrial Applications, v. 4, n. 14, p. 4-14, June 2018.
DeCs
Água de Chuva / prevenção & controle
Bacias Hidrográficas / análise
Precipitação Atmosférica
Escoamento de Água de Chuva / métodos
Coeficiente de Escoamento
Modelo SWAT
Previsão de Inundações
Previsões / métodos
Inundações
Bacia do Tocantins-Araguaia (PA)
Usina Hidrelétrica de Tucuruí (PA)
Direito Autoral
Acesso Aberto
Coleções
  • SAMAM - Artigos Científicos

Instituto Evandro Chagas - SVS - MS - 2007-2018 Rodovia BR316 km 7 sn - Levilandia - 67030-000 - Ananindeua - Para - Brasil.
Licença Creative CommonsEste trabalho está licenciado com uma Licença Creative Commons - Atribuição-NãoComercial 4.0 Internacional
Tel: (55 91) 3214-2191
Email: biblioteca@iec.gov.br / clariceneta@iec.gov.br
 

 

Navegar

NavegarComunidades e ColeçõesData do documentoAutorTítuloAssuntoEsta coleçãoData do documentoAutorTítuloAssunto

Minha conta

EntrarCadastro

Instituto Evandro Chagas - SVS - MS - 2007-2018 Rodovia BR316 km 7 sn - Levilandia - 67030-000 - Ananindeua - Para - Brasil.
Licença Creative CommonsEste trabalho está licenciado com uma Licença Creative Commons - Atribuição-NãoComercial 4.0 Internacional
Tel: (55 91) 3214-2191
Email: biblioteca@iec.gov.br / clariceneta@iec.gov.br